Doubly alternating Baxter permutations are Catalan

نویسندگان

  • Olivier Guibert
  • Svante Linusson
چکیده

The Baxter permutations who are alternating and whose inverse is also alternating are shown to be enumerated by the Catalan numbers. A bijection to complete binary trees is also given. R esum e Nous montrons que les permutations de Baxter alternantes dont l'inverse est egalement une permutation de Baxter alternante sont enum er ees par les nombres de Catalan. De plus, nous donnons une bijection avec les arbres binaires complets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Enumeration of Doubly Alternating Baxter Permutations

In this paper, we give an alternative proof that the number of doubly alternating Baxter permutations is Catalan.

متن کامل

The Expected Shape of Random Doubly Alternating Baxter Permutations

Guibert and Linusson introduced the family of doubly alternating Baxter permutations, i.e. Baxter permutations æ 2 Sn , such that æ and æ°1 are alternating. They proved that the number of such permutations in S2n and S2n+1 is the Catalan number Cn . In this paper we compute the expected limit shape of such permutations, following the approach by Miner and Pak.

متن کامل

Domino Tilings of Aztec Diamonds, Baxter Permutations, and Snow Leopard Permutations∗

In 1992 Elkies, Kuperberg, Larsen, and Propp introduced a bijection between domino tilings of Aztec diamonds and certain pairs of alternating-sign matrices whose sizes differ by one. In this paper we first study those smaller permutations which, when viewed as matrices, are paired with the matrices for doubly alternating Baxter permutations. We call these permutations snow ∗2010 AMS Subject Cla...

متن کامل

Pattern avoidance and RSK-like algorithms for alternating permutations and Young tableaux

We define a class Ln,k of permutations that generalizes alternating (up-down) permutations. We then give bijective proofs of certain pattern-avoidance results for this class. The bijections employed include are a modified form of the RSK insertion algorithm and a different bijection with RSK-like properties. As a special case of our results, we give two bijections between the set A2n(1234) of a...

متن کامل

Symmetric Permutations Avoiding Two Patterns ∗

Symmetric pattern-avoiding permutations are restricted permutations which are invariant under actions of certain subgroups of D4, the symmetry group of a square. We examine pattern-avoiding permutations with 180◦ rotational-symmetry. In particular, we use combinatorial techniques to enumerate symmetric permutations which avoid one pattern of length three and one pattern of length four. Our resu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 217  شماره 

صفحات  -

تاریخ انتشار 2000